Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.587
Filtrar
1.
Environ Microbiol Rep ; 16(2): e13248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581137

RESUMO

Sulphate-reducing bacteria (SRB) are the main culprits of microbiologically influenced corrosion in water-flooding petroleum reservoirs, but some sulphur-oxidising bacteria (SOB) are stimulated when nitrate and oxygen are injected, which control the growth of SRB. This study aimed to determine the distributions of SRB and SOB communities in injection-production systems and to analyse the responses of these bacteria to different treatments involving nitrate and oxygen. Desulfovibrio, Desulfobacca, Desulfobulbus, Sulfuricurvum and Dechloromonas were commonly detected via 16S rRNA gene sequencing. Still, no significant differences were observed for either the SRB or SOB communities between injection and production wells. Three groups of water samples collected from different sampling sites were incubated. Statistical analysis of functional gene (dsrB and soxB) clone libraries and quantitative polymerase chain reaction showed that the SOB community structures were more strongly affected by the nitrate and oxygen levels than SRB clustered according to the sampling site; moreover, both the SRB and SOB community abundances significantly changed. Additionally, the highest SRB inhibitory effect and the lowest dsrB/soxB ratio were obtained under high concentrations of nitrate and oxygen in the three groups, suggesting that the synergistic effect of nitrate and oxygen level was strong on the inhibition of SRB by potential SOB.


Assuntos
Desulfovibrio , Petróleo , Nitratos , Sulfatos , Água , RNA Ribossômico 16S/genética , Bactérias , Desulfovibrio/genética , Compostos Orgânicos , Enxofre , Oxirredução
2.
Sci Total Environ ; 926: 171918, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522553

RESUMO

The disposal of spent nuclear fuel in deep subsurface repositories using multi-barrier systems is considered to be the most promising method for preventing radionuclide leakage. However, the stability of the barriers can be affected by the activities of diverse microbes in subsurface environments. Therefore, this study investigated groundwater geochemistry and microbial populations, activities, and community structures at three potential spent nuclear fuel repository construction sites. The microbial analysis involved a multi-approach including both culture-dependent, culture-independent, and sequence-based methods for a comprehensive understanding of groundwater biogeochemistry. The results from all three sites showed that geochemical properties were closely related to microbial population and activities. Total number of cells estimates were strongly correlated to high dissolved organic carbon; while the ratio of adenosine-triphosphate:total number of cells indicated substantial activities of sulfate reducing bacteria. The 16S rRNA gene sequencing revealed that the microbial communities differed across the three sites, with each featuring microbes performing distinctive functions. In addition, our multi-approach provided some intriguing findings: a site with a low relative abundance of sulfate reducing bacteria based on the 16S rRNA gene sequencing showed high populations during most probable number incubation, implying that despite their low abundance, sulfate reducing bacteria still played an important role in sulfate reduction within the groundwater. Moreover, a redundancy analysis indicated a significant correlation between uranium concentrations and microbial community compositions, which suggests a potential impact of uranium on microbial community. These findings together highlight the importance of multi-methodological assessments in better characterizing groundwater biogeochemical properties for the selection of potential spent nuclear fuel disposal sites.


Assuntos
Desulfovibrio , Água Subterrânea , Urânio , Bactérias , Urânio/análise , RNA Ribossômico 16S/genética , Estudos Prospectivos , Água Subterrânea/química , Sulfatos/análise
3.
Sci Total Environ ; 925: 171763, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494030

RESUMO

Microbial biofilms are behind microbiologically influenced corrosion (MIC). Sessile cells in biofilms are many times more concentrated volumetrically than planktonic cells in the bulk fluids, thus providing locally high concentrations of chemicals. More importantly, "electroactive" sessile cells in biofilms are capable of utilizing extracellularly supplied electrons (e.g., from elemental Fe) for intracellular reduction of an oxidant such as sulfate in energy metabolism. MIC directly caused by anaerobic biofilms is classified into two main types based on their mechanisms: extracellular electron transfer MIC (EET-MIC) and metabolite MIC (M-MIC). Sulfate-reducing bacteria (SRB) are notorious for their corrosivity. They can cause EET-MIC in carbon steel, but they can also secrete biogenic H2S to corrode other metals such as Cu directly via M-MIC. This study investigated the use of conductive magnetic nanowires as electron mediators to accelerate and thus identify EET-MIC of C1020 by Desulfovibrio vulgaris. The presence of 40 ppm (w/w) nanowires in ATCC 1249 culture medium at 37 °C resulted in 45 % higher weight loss and 57 % deeper corrosion pits after 7-day incubation. Electrochemical tests using linear polarization resistance and potentiodynamic polarization supported the weight loss data trend. These findings suggest that conductive magnetic nanowires can be employed to identify EET-MIC. The use of insoluble 2 µm long nanowires proved that the extracellular section of the electron transfer process is a bottleneck in SRB MIC of carbon steel.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Nanofios , Humanos , Aço , Elétrons , Carbono/metabolismo , Biofilmes , Desulfovibrio/metabolismo , Corrosão , Sulfatos/metabolismo , Redução de Peso
4.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490736

RESUMO

Phytoplankton blooms fuel marine food webs with labile dissolved carbon and also lead to the formation of particulate organic matter composed of living and dead algal cells. These particles contribute to carbon sequestration and are sites of intense algal-bacterial interactions, providing diverse niches for microbes to thrive. We analyzed 16S and 18S ribosomal RNA gene amplicon sequences obtained from 51 time points and metaproteomes from 3 time points during a spring phytoplankton bloom in a shallow location (6-10 m depth) in the North Sea. Particulate fractions larger than 10 µm diameter were collected at near daily intervals between early March and late May in 2018. Network analysis identified two major modules representing bacteria co-occurring with diatoms and with dinoflagellates, respectively. The diatom network module included known sulfate-reducing Desulfobacterota as well as potentially sulfur-oxidizing Ectothiorhodospiraceae. Metaproteome analyses confirmed presence of key enzymes involved in dissimilatory sulfate reduction, a process known to occur in sinking particles at greater depths and in sediments. Our results indicate the presence of sufficiently anoxic niches in the particle fraction of an active phytoplankton bloom to sustain sulfate reduction, and an important role of benthic-pelagic coupling for microbiomes in shallow environments. Our findings may have implications for the understanding of algal-bacterial interactions and carbon export during blooms in shallow-water coastal areas.


Assuntos
Desulfovibrio , Diatomáceas , Microbiota , Diatomáceas/genética , Fitoplâncton , Bactérias/genética , Carbono
5.
Appl Environ Microbiol ; 90(4): e0139023, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38551370

RESUMO

Sulfate-reducing prokaryotes (SRPs) are essential microorganisms that play crucial roles in various ecological processes. Even though SRPs have been studied for over a century, there are still gaps in our understanding of their biology. In the past two decades, a significant amount of data on SRP ecology has been accumulated. This review aims to consolidate that information, focusing on SRPs in soils, their relation to the rare biosphere, uncultured sulfate reducers, and their interactions with other organisms in terrestrial ecosystems. SRPs in soils form part of the rare biosphere and contribute to various processes as a low-density population. The data reveal a diverse range of sulfate-reducing taxa intricately involved in terrestrial carbon and sulfur cycles. While some taxa like Desulfitobacterium and Desulfosporosinus are well studied, others are more enigmatic. For example, members of the Acidobacteriota phylum appear to hold significant importance for the terrestrial sulfur cycle. Many aspects of SRP ecology remain mysterious, including sulfate reduction in different bacterial phyla, interactions with bacteria and fungi in soils, and the existence of soil sulfate-reducing archaea. Utilizing metagenomic, metatranscriptomic, and culture-dependent approaches will help uncover the diversity, functional potential, and adaptations of SRPs in the global environment.


Assuntos
Desulfovibrio , Ecossistema , Bactérias/genética , Sulfatos/análise , Enxofre , Solo
6.
Bioresour Technol ; 397: 130501, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417462

RESUMO

A robust modeling approach for predicting heavy metal removal by sulfate-reducing bacteria (SRB) is currently missing. In this study, four machine learning models were constructed and compared to predict the removal of Cd, Cu, Pb, and Zn as individual ions by SRB. The CatBoost model exhibited the best predictive performance across the four subsets, achieving R2 values of 0.83, 0.91, 0.92, and 0.83 for the Cd, Cu, Pb, and Zn models, respectively. Feature analysis revealed that temperature, pH, sulfate concentration, and C/S (the mass ratio of chemical oxygen demand to sulfate) had significant impacts on the outcomes. These features exhibited the most effective metal removal at 35 °C and sulfate concentrations of 1000-1200 mg/L, with variations observed in pH and C/S ratios. This study introduced a new modeling approach for predicting the treatment of metal-containing wastewater by SRB, offering guidance for optimizing operational parameters in the biological sulfidogenic process.


Assuntos
Desulfovibrio , Metais Pesados , Cádmio , Chumbo , Sulfatos
7.
Chemosphere ; 352: 141403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368967

RESUMO

High concentrations of metals and sulfates in acid mine drainage (AMD) are the cause of the severe environmental hazard that mining operations pose to the surrounding ecosystem. Little study has been conducted on the cost-effective biological process for treating high AMD. The current research investigated the potential of the proposed carbon source and sulfate reduction bacteria (SRB) culture in achieving the bioremediation of sulfate and heavy metals. This work uses individual and combinatorial bioaugmentation and bio-stimulation methods to bioremediate acid-mine-influenced groundwater in batch microcosm experiments. Bioaugmentation and bio-stimulation methods included pure culture SRB (Desulfovibrio vulgaris) and microsized oil droplet (MOD) by emulsifying corn oil. The research tested natural attenuation (T 1), bioaugmentation (T2), biostimulation (T3), and bioaugmentation plus biostimulation (T4) for AM-contaminated groundwater remediation. Bioaugmentation and bio-stimulation showed the greatest sulfate reduction (75.3%) and metal removal (95-99%). Due to carbon supply scarcity, T1 and T2 demonstrated 15.7% and 27.8% sulfate reduction activities. Acetate concentrations in T3 and T4 increased bacterial activity by providing carbon sources. Metal bio-precipitation was substantially linked with sulfate reduction and cell growth. SEM-EDS study of precipitates in T3 and T4 microcosm spectra indicated peaks for S, Cd, Mn, Cu, Zn, and Fe, indicating metal-sulfide association for metal removal precipitates. The MOD provided a constant carbon source for indigenous bacteria, while Desulfovibrio vulgaris increased biogenic sulfide synthesis for heavy metal removal.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Metais Pesados , Biodegradação Ambiental , Óleo de Milho , Zea mays , Ecossistema , Bactérias , Ácidos , Sulfatos , Carbono , Sulfetos
8.
World J Microbiol Biotechnol ; 40(3): 98, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353843

RESUMO

Microbiologically-influenced corrosion (MIC) is a common operational hazard to many industrial processes. The focus of this review lies on microbial corrosion in the maritime industry. Microbial metal attachment and colonization are the critical steps in MIC initiation. We have outlined the crucial factors influencing corrosion caused by microorganism sulfate-reducing bacteria (SRB), where its adherence on the metal surface leads to Direct Electron Transfer (DET)-MIC. This review thus aims to summarize the recent progress and the lacunae in mitigation of MIC. We further highlight the susceptibility of stainless steel grades to SRB pitting corrosion and have included recent developments in understanding the quorum sensing mechanisms in SRB, which governs the proliferation process of the microbial community. There is a paucity of literature on the utilization of anti-quorum sensing molecules against SRB, indicating that the area of study is in its nascent stage of development. Furthermore, microbial adherence to metal is significantly impacted by surface chemistry and topography. Thus, we have reviewed the application of super wettable surfaces such as superhydrophobic, superhydrophilic, and slippery liquid-infused porous surfaces as "anti-corrosion coatings" in preventing adhesion of SRB, providing a potential avenue for the development of practical and feasible solutions in the prevention of MIC. The emerging field of super wettable surfaces holds significant potential for advancing efficient and practical MIC prevention techniques.


Assuntos
Desulfovibrio , Microbiota , Corrosão , Transporte de Elétrons , Porosidade
9.
J Hazard Mater ; 467: 133618, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335612

RESUMO

Sulfur-containing substances in sewers frequently incur unpleasant odors, corrosion-related economic loss, and potential human health concerns. These observations are principally attributed to microbial reactions, particularly the involvement of sulfate-reducing bacteria (SRB) in sulfur reduction process. As a multivalent element, sulfur engages in complex bioreactions in both aerobic and anaerobic environments. Organic sulfides are also present in sewage, and these compounds possess the potential to undergo transformation and volatilization. In this paper, a comprehensive review was conducted on the present status regarding sulfur transformation, transportation, and remediation in sewers, including both inorganic and organic sulfur components. The review extensively addressed reactions occurring in the liquid and gas phase, as well as examined detection methods for various types of sulfur compounds and factors affecting sulfur transformation. Current remediation measures based on corresponding mechanisms were presented. Additionally, the impacts of measures implemented in sewers on the subsequent wastewater treatment plants were also discussed, aiming to attain better management of the entire wastewater system. Finally, challenges and prospects related to the issue of sulfur-containing substances in sewers were proposed to facilitate improved management and development of the urban water system.


Assuntos
Desulfovibrio , Enxofre , Humanos , Compostos de Enxofre , Corrosão , Esgotos
10.
Bioelectrochemistry ; 157: 108650, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38286079

RESUMO

Microbiologically influenced corrosion (MIC) is a complicated process that happens ubiquitously and quietly in many fields. As a useful nutritional ingredient in microbial culture media, yeast extract (YE) is a routinely added in the MIC field. However, how the YE participated in MIC is not fully clarified. In the present work, the effect of YE on the growth of sulfate reducing prokaryotes (SRP) Desulfovibrio bizertensis SY-1 and corrosion behavior of X70 pipeline steel were studied. It was found that the weight loss of steel coupons in sterile media was doubled when YE was removed from culture media. However, in the SRP assays without YE the number of planktonic cells decreased, but the attachment of bacteria on steel surfaces was enhanced significantly. Besides, the corrosion rate of steel in SRP assays increased fourfold after removing YE from culture media. MIC was not determined for assays with planktonic SRP but only for biofilm assays. The results confirm the effect of YE on D. bizertensis SY-1 growth and also the inhibitory role of YE on MIC.


Assuntos
Desulfovibrio , Aço , Corrosão , Biofilmes , Sulfatos , Plâncton/microbiologia , Meios de Cultura
11.
J Hazard Mater ; 466: 133622, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280317

RESUMO

Ferrous sulfide nanoparticles (nFeS) have proven to be effective in removing heavy metals (HMs) from wastewater. One such approach, which has garnered much attention as a sustainable technology, is via the in situ microbial synthesis of nFeS. Here, a sulfate-reducing bacteria (SRB) strain, Geobacter sulfurreducens, was used to initially biosynthesize ferrous sulfide nanoparticles (SRB-nFeS) and thereafter remove HMs from acid mine drainage (AMD). SRB-nFeS was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) coupled to an energy dispersive spectrometer (EDS), three-dimensional excitation-emission matrix (3D-EEM) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Such characterization showed that SRB mediated the reduction of SO42- to S2- to form nFeS, where the metabolized substances functioned as complexing agents which coordinated with nFeS to form biofunctional SRB-nFeS with improved stability. One advantage of this synthetic route was that the attachment of nFeS to the bacterial surface protected SRB cells from HM toxicity. Furthermore, due to a synergistic effect between nFeS and SRB, HM removal from both solution and AMD by SRB-nFeS was enhanced relative to the constituent components. Thus, after 5 consecutive cycles of HM removal, SRB-nFeS removed, Pb(Ⅱ) (92.6%), Cd(Ⅱ) (78.7%), Cu(Ⅱ) (76.0%), Ni(Ⅱ) (62.5%), Mn(Ⅱ) (62.2%), and Zn(Ⅱ) (88.5%) from AMD This study thus provides new insights into the biosynthesis of SRB-nFeS and its subsequent practical application in the removal of HMs from AMD.


Assuntos
Desulfovibrio , Compostos Ferrosos , Metais Pesados , Sulfatos/química , Metais Pesados/química , Desulfovibrio/metabolismo , Bactérias/metabolismo , Ácidos/metabolismo
12.
J Hazard Mater ; 465: 133052, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056257

RESUMO

The sulfate-reducing efficiency of sulfate-reducing bacteria (SRB) is strongly influenced by the presence of oxygen, but little is known about the oxygen tolerance mechanism of SRB and the effect of oxygen on the metalliferous immobilization by SRB. The performance evaluation, identification of bioprecipitates, and microbial and metabolic process analyses were used here to investigate the As3+ immobilization mechanisms and survival strategies of the SRB1 consortium under different oxygen-containing environments. Results indicated that the sulfate reduction efficiency was significantly decreased under aerobic (47.37%) compared with anaerobic conditions (66.72%). SEM analysis showed that under anaerobic and aerobic conditions, the morphologies of mineral particles were different, whereas XRD and XPS analyses showed that the most of As3+ bioprecipitates under both conditions were arsenic minerals such as AsS and As4S4. The abundances of Clostridium_sensu_stricto_1, Desulfovibrio, and Thiomonas anaerobic bacteria were significantly higher under anaerobic than aerobic conditions, whereas the aerobic Pseudomonas showed an opposite trend. Network analysis revealed that Desulfovibrio was positively correlated with Pseudomonas. Metabolic process analysis confirmed that under aerobic conditions the SRB1 consortium generated additional extracellular polymeric substances (rich in functionalities such as Fe-O, SO, CO, and -OH) and the anti-oxidative enzyme superoxide dismutase to resist As3+ stress and oxygen toxicity. New insights are provided here into the oxygen tolerance and detoxification mechanism of SRB and provide a basis for the future remediation of heavy metal(loid)-contaminated environments.


Assuntos
Desulfovibrio , Consórcios Microbianos , Anaerobiose , Desulfovibrio/metabolismo , Sulfatos/metabolismo , Oxigênio/metabolismo
13.
J Environ Manage ; 351: 119784, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081091

RESUMO

During the long-term stabilization process of landfills, the pressure field undergoes constant changes. This study constructed dynamic pressure changes scenarios of high-pressure differentials (0.6 MPa) and low-pressure differentials (0.2 MPa) in the landfill pressure field at 25 °C and 50 °C, and investigated the sulfate reduction behavior in response to landfill dynamic pressure changes. The results showed that the pressurization or depressurization of high-pressure differentials caused more significant differences in sulfate reduction behavior than that of low-pressure differentials. The lowest hydrogen sulfide (H2S) release peak concentration under pressurization was only 29.67% of that under initial pressure condition; under depressurization, the highest peak concentration of H2S was up to 21,828 mg m-3, posing a serious risk of H2S pollution. Microbial community and correlation analysis showed that pressure had a negative impact on the sulfate-reducing bacteria (SRB) community, and the SRB community adjusted its structure to adapt to pressure changes. Specific SRBs were further enriched with pressure changes. Differential H2S release behavior under pressure changes in the 25 °C pressure environments were mediated by Desulfofarcimen (ASV343) and Desulfosporosinus (ASV1336), while Candidatus Desulforudis (ASV24) and Desulfohalotomaculum (ASV94) played a key role at 50 °C. This study is helpful in the formulation of control strategies for the source of odor pollution in landfills.


Assuntos
Desulfovibrio , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/química , Instalações de Eliminação de Resíduos , Sulfatos/química
14.
Environ Sci Pollut Res Int ; 31(3): 4269-4279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097840

RESUMO

Microbiologically influenced corrosion (MIC) is one of the reasons leading to the service failure of pipelines buried in the soil. In this work, the effect of sulfate-reducing bacteria (SRB) on the corrosion behavior of Q235 carbon steel in groundwater was investigated by electrochemical methods, surface analysis, and biological analysis. The results show that SRB utilizes iron as electron donor to sustain the vital activities of organic carbon-starved groundwater during the 14-day experimental period. The microbial community composition analysis at the genus level demonstrate that the diversity and richness decrease after corrosion, and the dominant SRB species has changed from Desulfovibrio to Desulfosporosinus. Moreover, the impedance of the carbon steel in the presence of biofilm was 1 order of magnitude higher than that of other periods in the electrochemical test, indicating that the biofilm and formed ferrous sulfide layer impeded the occurrence of corrosion. Although the 3D topography indicated that the surface of carbon steel was more uneven and pits were increased in the presence of SRB, the average weight loss (0.0396 ± 0.0050 g) was much higher than that without SRB (0.0139 ± 0.0007 g). These results implied that the growth of SRB makes the corrosion process of Q235 carbon steel more complicated.


Assuntos
Desulfovibrio , Água Subterrânea , Microbiota , Aço/química , Corrosão , Carbono/farmacologia , Biofilmes , Sulfatos/farmacologia
15.
Bioelectrochemistry ; 156: 108633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160511

RESUMO

In this study, a novel Cu-based (Cu55Al20Ni12Ti8Si5, at.%) medium-entropy alloy (MEA) coating was prepared by high-velocity oxygen-fuel (HVOF) spraying technology. Thermo-Calc was employed to simulate the phase diagram of the alloy system. Phase composition and microstructure of the as-sprayed coating were characterized by means of XRD, FESEM, TEM and STEM/EDX. The effect of sulfate-reducing bacteria (SRB) on the corrosion behavior of the coating and the as-cast Ni-Al bronze (NAB) was investigated using electrochemical measurements and surface characterization. The Thermo-Cala simulation results showed that the alloy system presented a single BCC solid solution phase, while the detailed characterization of microstructure indicated that a few NiTi-rich B2-ordered precipitates could be also found in the as-sprayed coating other than the Cu-rich BCC matrix. Electrochemical studies illustrated that the coating exhibited superior corrosion resistance than the NAB in SRB medium, the corrosion acceleration efficiency induced by SRB of the NAB (95.3 %) was more severe than that of the coating (63.8 %). Surface analysis results demonstrated the occurrence of pitting corrosion and the formation of Cu2S on the coating surface after corroded in SRB medium. Corrosive metabolite HS- induced microbiologically influenced corrosion was considered as the main corrosion acceleration mechanism caused by SRB.


Assuntos
Ligas , Desulfovibrio , Ligas/química , Corrosão , Entropia , Oxigênio , Cobre/química
16.
Biofouling ; 39(9-10): 897-915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073525

RESUMO

Sulphate-reducing bacteria (SRB) are known to cause severe corrosion of steel structures in various industries, resulting in significant economic and environmental consequences. This review paper critically examines the impact of SRB-induced corrosion on steel, including the formation of SRB biofilms, the effect on different types of steel, and the various models developed to investigate this phenomenon. The role of environmental factors in SRB-induced corrosion, molecular techniques for studying SRBs, and strategies for mitigating corrosion are discussed. Additionally, the sustainability implications of SRB-induced corrosion and the potential use of alternative materials were explored. By examining the current state of knowledge on this topic, this review aims to provide a comprehensive understanding of the impact of SRB-induced corrosion on steel and identify opportunities for further research and development.


Assuntos
Biofilmes , Desulfovibrio , Aço/química , Corrosão , Sulfatos/farmacologia
17.
Sci Rep ; 13(1): 16181, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758719

RESUMO

Sulfate-reducing bacteria (SRB) are terminal members of any anaerobic food chain. For example, they critically influence the biogeochemical cycling of carbon, nitrogen, sulfur, and metals (natural environment) as well as the corrosion of civil infrastructure (built environment). The United States alone spends nearly $4 billion to address the biocorrosion challenges of SRB. It is important to analyze the genetic mechanisms of these organisms under environmental stresses. The current study uses complementary methodologies, viz., transcriptome-wide marker gene panel mapping and gene clustering analysis to decipher the stress mechanisms in four SRB. Here, the accessible RNA-sequencing data from the public domains were mined to identify the key transcriptional signatures. Crucial transcriptional candidate genes of Desulfovibrio spp. were accomplished and validated the gene cluster prediction. In addition, the unique transcriptional signatures of Oleidesulfovibrio alaskensis (OA-G20) at graphene and copper interfaces were discussed using in-house RNA-sequencing data. Furthermore, the comparative genomic analysis revealed 12,821 genes with translation, among which 10,178 genes were in homolog families and 2643 genes were in singleton families were observed among the 4 genomes studied. The current study paves a path for developing predictive deep learning tools for interpretable and mechanistic learning analysis of the SRB gene regulation.


Assuntos
Desulfovibrio , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Cadeia Alimentar , Sulfatos
18.
J Hazard Mater ; 459: 132213, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37549581

RESUMO

Sulfate-reducing bacteria (SRB) can immobilize heavy metals in soils through biomineralization, and the parent rock and minerals in the soil are critical to the immobilization efficiency of SRB. To date, there is little knowledge about the fate of Cd associated with the parent rocks and minerals of soil during Cd immobilized by SRB. In this study, we created a model system using clay-size fraction of soil and SRB to explore the role of SRB in immobilizing Cd in soils from stratigraphic successions with high geochemical background. In the system, clay-size fractions (particle size < 2 µm) with concentration of Cd (0.24-2.84 mg/kg) were extracted from soils for bacteria inoculation. After SRB reaction for 10 days, the Cd fraction tended to transform into iron-manganese bound. Further, two clay-size fractions, i.e., the non-crystalline iron oxide (Fe-OX) and the crystalline iron oxide (Fe-CBD), were separated by extraction. The reaction of SRB with them verified the transformation of primary iron-bearing minerals into secondary iron-bearing minerals, which contributed to Cd redistribution. This study shows that SRB could exploit the composition and structure of minerals to induce mineral recrystallization, thereby aggravating Cd redistribution and immobilization in clay-size fractions from stratigraphic successions with high geochemical background.


Assuntos
Desulfovibrio , Poluentes do Solo , Argila , Solo/química , Cádmio/química , Poluentes do Solo/análise , Minerais/química , Ferro/metabolismo , Desulfovibrio/metabolismo , Sulfatos
19.
Sci Rep ; 13(1): 13922, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626119

RESUMO

Animal and human feces typically include intestinal sulfate-reducing bacteria (SRB). Hydrogen sulfide and acetate are the end products of their dissimilatory sulfate reduction and may create a synergistic effect. Here, we report NADH and NADPH peroxidase activities from intestinal SRB Desulfomicrobium orale and Desulfovibrio piger. We sought to compare enzymatic activities under the influence of various temperature and pH regimes, as well as to carry out kinetic analyses of enzymatic reaction rates, maximum amounts of the reaction product, reaction times, maximum rates of the enzyme reactions, and Michaelis constants in cell-free extracts of intestinal SRB, D. piger Vib-7, and D. orale Rod-9, collected from exponential and stationary growth phases. The optimal temperature (35 °C) and pH (7.0) for both enzyme's activity were determined. The difference in trends of Michaelis constants (Km) during exponential and stationary phases are noticeable between D. piger Vib-7 and D. orale Rod-9; D. orale Rod-9 showed much higher Km (the exception is NADH peroxidase of D. piger Vib-7: 1.42 ± 0.11 mM) during the both monitored phases. Studies of the NADH and NADPH peroxidases-as putative antioxidant defense systems of intestinal SRB and detailed data on the kinetic properties of this enzyme, as expressed by the decomposition of hydrogen peroxide-could be important for clarifying evolutionary mechanisms of antioxidant defense systems, their etiological role in the process of dissimilatory sulfate reduction, and their possible role in the development of bowel diseases.


Assuntos
Antioxidantes , Desulfovibrio , Animais , Humanos , NAD , NADP , Extratos Celulares , Peroxidases , Mecanismos de Defesa , Sulfatos
20.
Sci Total Environ ; 904: 166296, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591387

RESUMO

Phosphogypsum (PG), a by-product of the phosphate industry, is high in sulfate, (SO42-), which makes it an excellent substrate for sulfate-reducing bacteria (SRB) to produce hydrogen sulfide. This work aimed to optimize SO42- leaching from PG to achieve a high biological reduction of SO42- and generate high sulfide concentrations for subsequent use in the biological recovery of elemental sulfur. Five SRB consortia were isolated and enriched from: IS (Industrial sludges), MS (Marine sediments), WC (Winogradsky column), SNV (petroleum industry sediments) and PG (stored Phosphogypsum). The five consortia showed reduction activity when using PG leachate (with water) as source of SO42- and lactate, acetate, or glucose as the electron donor. The highest reduction rate (81.5 %) was registered using lactate and the IS consortium (81.5 %) followed by MS (79 %) and PG (71 %). To enhance the concentration of leached SO42- from PG for future utilization with the isolated consortia, PG was treated with NaOH solutions (2 % and 5 %). SO42- release of 97 % was achieved with a 5 % concentration and the resulting leachate was further diluted to target a SO42- concentration of 12.4 g·L-1 for utilization with the isolated consortia. Compared to water leachate, a significantly higher reduction rate was registered (2 g·L-1 of SO42) using the IS consortium, demonstrating limited inhibition effect of sulfide- concentration on SRB functionalities. Moreover, metagenomic analysis of the consortia revealed that using PG as a source of SO42- increased the abundance of Deltaproteobacteria, including known SRB like Desulfovibrio, Desulfomicrobium, and Desulfosporosinus, as well as novel SRB genera (Cupidesulfovibrio, Desulfocurvus, Desulfococcus) that showed, for the first time, significant potential as novel sulfate-reducers using PG as a SO42- source.


Assuntos
Desulfovibrio , Sulfatos , Sulfatos/química , Anaerobiose , Bactérias , Água , Sulfetos , Lactatos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...